20 July 2011

AstroNews: Hubble Discovers Another Moon Around Pluto

Astronomers using the Hubble Space Telescope discovered a fourth moon orbiting the icy dwarf planet Pluto. The tiny, new satellite — temporarily designated P4 — was uncovered in a Hubble survey searching for rings around the dwarf planet.

The new moon is the smallest discovered around Pluto. It has an estimated diameter of 8 to 21 miles (13 to 34 km). By comparison, Charon, Pluto's largest moon, is 648 miles (1,043 km) across, and the other moons, Nix and Hydra, are in the range of 20 to 70 miles in diameter (32 to 113 km).

"I find it remarkable that Hubble's cameras enabled us to see such a tiny object so clearly from a distance of more than 3 billion miles (5 billion km)," said Mark Showalter of the SETI Institute in Mountain View, Calif., who led this observing program with Hubble.

The finding is a result of ongoing work to support NASA's New Horizons mission, scheduled to fly through the Pluto system in 2015. The mission is designed to provide new insights about worlds at the edge of our solar system. Hubble's mapping of Pluto's surface and discovery of its satellites have been invaluable to planning for New Horizons' close encounter.

"This is a fantastic discovery," said New Horizons' principal investigator Alan Stern of the Southwest Research Institute in Boulder, Colo. "Now that we know there's another moon in the Pluto system, we can plan close-up observations of it during our flyby."

The new moon is located between the orbits of Nix and Hydra, which Hubble discovered in 2005. Charon was discovered in 1978 at the U.S. Naval Observatory and first resolved using Hubble in 1990 as a separate body from Pluto.

The dwarf planet's entire moon system is believed to have formed by a collision between Pluto and another planet-sized body early in the history of the solar system. The smashup flung material that coalesced into the family of satellites observed around Pluto.

Lunar rocks returned to Earth from the Apollo missions led to the theory that our moon was the result of a similar collision between Earth and a Mars-sized body 4.4 billion years ago. Scientists believe material blasted off Pluto's moons by micrometeoroid impacts may form rings around the dwarf planet, but the Hubble photographs have not detected any so far.

"This surprising observation is a powerful reminder of Hubble's ability as a general purpose astronomical observatory to make astounding, unintended discoveries," said Jon Morse, astrophysics division director at NASA Headquarters in Washington.

P4 was first seen in a photo taken with Hubble's Wide Field Camera 3 on June 28. It was confirmed in subsequent Hubble pictures taken on July 3 and July 18. The moon was not seen in earlier Hubble images because the exposure times were shorter. There is a chance it appeared as a very faint smudge in 2006 images, but was overlooked because it was obscured.

Hubble is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center in Greenbelt, Md., manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy Inc. in Washington.


19 July 2011

Astro News: NASA Dawn Spacecraft Returns Close-Up Image of Asteroid Vesta

NASA's Dawn spacecraft has returned the first close-up image after beginning its orbit around the giant asteroid Vesta. On Friday, July 15, Dawn became the first probe to enter orbit around an object in the main asteroid belt between Mars and Jupiter.

The image taken for navigation purposes shows Vesta in greater detail than ever before. When Vesta captured Dawn into its orbit, there were approximately 9,900 miles (16,000 kilometers) between the spacecraft and asteroid. Engineers estimate the orbit capture took place at 10 p.m. PDT Friday, July 15 (1 a.m. EDT Saturday, July 16).

Vesta is 330 miles (530 kilometers) in diameter and the second most massive object in the asteroid belt. Ground- and space-based telescopes have obtained images of Vesta for about two centuries, but they have not been able to see much detail on its surface. "We are beginning the study of arguably the oldest extant primordial surface in the solar system," said Dawn principal investigator Christopher Russell from the University of California, Los Angeles. "This region of space has been ignored for far too long. So far, the images received to date reveal a complex surface that seems to have preserved some of the earliest events in Vesta's history, as well as logging the onslaught that Vesta has suffered in the intervening eons."

Vesta is thought to be the source of a large number of meteorites that fall to Earth. Vesta and its new NASA neighbor, Dawn, are currently approximately 117 million miles (188 million kilometers) away from Earth. The Dawn team will begin gathering science data in August. Observations will provide unprecedented data to help scientists understand the earliest chapter of our solar system. The data also will help pave the way for future human space missions.

After traveling nearly four years and 1.7 billion miles (2.8 billion kilometers), Dawn also accomplished the largest propulsive acceleration of any spacecraft, with a change in velocity of more than 4.2 miles per second (6.7 kilometers per second), due to its ion engines. The engines expel ions to create thrust and provide higher spacecraft speeds than any other technology currently available. "Dawn slipped gently into orbit with the same grace it has displayed during its years of ion thrusting through interplanetary space," said Marc Rayman, Dawn chief engineer and mission manager at NASA's Jet Propulsion Laboratory in Pasadena, Calif. "It is fantastically exciting that we will begin providing humankind its first detailed views of one of the last unexplored worlds in the inner solar system."

Although orbit capture is complete, the approach phase will continue for about three weeks. During approach, the Dawn team will continue a search for possible moons around the asteroid; obtain more images for navigation; observe Vesta's physical properties; and obtain calibration data.

In addition, navigators will measure the strength of Vesta's gravitational tug on the spacecraft to compute the asteroid's mass with much greater accuracy than has been previously available. That will allow them to refine the time of orbit insertion.

Dawn will spend one year orbiting Vesta, then travel to a second destination, the dwarf planet Ceres, arriving in February 2015. The mission to Vesta and Ceres is managed by JPL for the agency's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, which is managed by NASA's Marshall Space Flight Center in Huntsville, Ala.

UCLA is responsible for Dawn mission science. Orbital Sciences Corp. of Dulles, Va., designed and built the spacecraft. The German Aerospace Center, the Max Planck Institute for Solar System Research, the Italian Space Agency and the Italian National Astrophysical Institute are part of the mission's team.

To view the image and obtain more information about the Dawn mission, visit: http://www.nasa.gov/dawn and http://dawn.jpl.nasa.gov .

01 July 2011


An international team of astronomers announced today the discovery of the most distant known supermassive black hole, seen as a luminous quasar  caused by gas falling into the black hole.
Artist's conception of how the quasar would appear close up. The very hot extremely luminous quasar at the center of the image is very bright at ultraviolet wavelengths, and light from the quasar ionizes the surrounding gas, producing the red color that is characteristic of ionized hydrogen. Faint compact galaxies that have just been born appear in the background. The galaxies' hot stars also ionize their surroundings, but only in the immediate vicinity as they are far less luminous than the quasar which can ionize over a much larger volume.
Gemini Observatory/AURA by Lynette Cook

The discovery came to light using data from an ongoing infrared sky survey being conducted at the United Kingdom Infrared Telescope (UKIRT) and critical follow-up confirmation observations with the Gemini North telescope, both on Mauna Kea in Hawai'i. The results are presented in the June 30, 2011 issue of the Journal Nature. The light from the quasar started its journey toward us when the universe was only 6% of its present age, a mere 770 million years after the Big Bang, at a redshift of about 7.1. "This gives astronomers a headache," says lead author Daniel Mortlock, from Imperial College London. "It's difficult to understand how a black hole a billion times more massive than the Sun can have grown so early in the history of the universe. It's like rolling a snowball down the hill and suddenly you find that it's 20 feet across!"

However, as well as being a headache, the new quasar is a great opportunity, because it allows scientists to measure the conditions in the gas that the quasar's light passes through on its way to us. "What is particularly important about this source is how bright it is," says Mortlock. "It's hundreds of times brighter than anything else yet discovered at such a great distance. This means that we can use it to tell us for the first time what conditions were like in the early universe."

Cosmologists are extremely keen to measure the state of gas in the early universe, to understand the process of how stars and galaxies formed. Most of the gas in the universe is hydrogen, and most of it is ionized at the present time, meaning that the electrons have been stripped off the protons. As one looks further away and thus further back in time, one should eventually reach the time when the gas was neutral, with the electrons and protons combined as atoms, before most of the stars in the universe have formed, over 12 billion years ago. The transition between these periods is the epoch of reionization, a milestone in cosmic history. The light from the new quasar displays the characteristic signature of neutral gas. This signature, showing the quasar is beyond the epoch of reionization, was predicted in 1998 but has never been observed before. "Being able to analyze matter at this critical juncture in the history of the universe is something we've been long striving for but never quite achieved. Now it looks like we have crossed the barrier with this observation," said Prof. Steve Warren, leader of the quasar team. "It's like discovering a new continent which we can now explore."

The quasar, named ULAS J1120+0641, was discovered in the UKIRT Infrared Deep Sky Survey (UKIDSS) a new map of the sky at infrared wavelengths. Such very distant, highly redshifted objects are much more easily found in infrared light. "It was for just this sort of discovery that we began this ambitious survey in 2005," said Prof. Gary Davis, Director of UKIRT. To find the quasar the team sifted through images of over 10 million sources. "We'd been searching for five years, and hadn't found anything, and were beginning to lose heart," said Warren. "It gave us a terrific jolt when we found it as we hadn't really expected to discover anything quite so far away."

To confirm that the object was really a distant quasar and measure its distance, in December 2010 the team made further observations with the 8-meter Gemini North telescope, UKIRT's neighbor on Mauna Kea, using the Gemini Near-Infrared Spectrograph (GNIRS). "The timing was perfect..." recalled Kathy Roth, an astronomer at Gemini Observatory, "...as we got the observation request just days after the spectrograph had been made available for science use at Gemini North. Once the measurements were made it became immediately obvious they had found what they were looking for." The team then quickly collected an additional set of detailed observations, with telescopes at the European Southern Observatory (ESO), and in the Canary Islands. Collectively, these observations from many facilities allowed a detailed study of the properties of the quasar itself, and of the surrounding gas.

The team plans further detailed observations of ULAS J1120+0641, but also hope to find more such distant but bright quasars. "There may be 100 such objects spread around the whole sky," says Mortlock, "but finding them amongst the billions of other objects in astronomical images is a serious challenge!"

News credit: Gemini/Joint Astronomy Centre

Astro News: Clocking Neptune's Spin

Clocking Neptune's Spin
By Daniel Stolte, University Communications, University of Arizona
Neptune:   Image credit NASA

By tracking atmospheric features on Neptune, a UA planetary scientist has accurately determined the planet's rotation, a feat that had not been previously achieved for any of the gas planets in our solar system except Jupiter.

A day on Neptune lasts precisely 15 hours, 57 minutes and 59 seconds, according to the first accurate measurement of its rotational period made by University of Arizona planetary scientist Erich Karkoschka.
His result is one of the largest improvements in determining the rotational period of a gas planet in almost 350 years since Italian astronomer Giovanni Cassini made the first observations of Jupiter's Red Spot.
"The rotational period of a planet is one of its fundamental properties," said Karkoschka, a senior staff scientist at the UA's Lunar and Planetary Laboratory. "Neptune has two features observable with the Hubble Space Telescope that seem to track the interior rotation of the planet. Nothing similar has been seen before on any of the four giant planets."
The discovery is published in Icarus, the official scientific publication of the Division for Planetary Sciences of the American Astronomical Society.
Unlike the rocky planets – Mercury, Venus, Earth and Mars – which behave like solid balls spinning in a rather straightforward manner, the giant gas planets – Jupiter, Saturn, Uranus and Neptune – rotate more like giant blobs of liquid. Since they are believed to consist of mainly ice and gas around a relatively small solid core, their rotation involves a lot of sloshing, swirling and roiling, which has made it difficult for astronomers to get an accurate grip on exactly how fast they spin around.
In this image, the colors and contrasts were modified to emphasize the planet’s atmospheric features. The winds in Neptune’s atmosphere can reach the speed of sound or more. Neptune’s Great Dark Spot stands out as the most prominent feature on the left. Several features, including the fainter Dark Spot 2 and the South Polar Feature, are locked to the planet’s rotation, which allowed Karkoschka to precisely determine how long a day lasts on Neptune. (Image: Erich Karkoschka)

"If you looked at Earth from space, you'd see mountains and other features on the ground rotating with great regularity, but if you looked at the clouds, they wouldn't because the winds change all the time," Karkoschka explained. "If you look at the giant planets, you don't see a surface, just a thick cloudy atmosphere."
"On Neptune, all you see is moving clouds and features in the planet's atmosphere. Some move faster, some move slower, some accelerate, but you really don't know what the rotational period is, if there even is some solid inner core that is rotating."
In the 1950s, when astronomers built the first radio telescopes, they discovered that Jupiter sends out pulsating radio beams, like a lighthouse in space. Those signals originate from a magnetic field generated by the rotation of the planet's inner core.
No clues about the rotation of the other gas giants, however, were available because any radio signals they may emit are being swept out into space by the solar wind and never reach Earth.
"The only way to measure radio waves is to send spacecraft to those planets," Karkoschka said. "When Voyager 1 and 2 flew past Saturn, they found radio signals and clocked them at exactly 10.66 hours, and they found radio signals for Uranus and Neptune as well. So based on those radio signals, we thought we knew the rotation periods of those planets."
But when the Cassini probe arrived at Saturn 15 years later, its sensors detected its radio period had changed by about 1 percent. Karkoschka explained that because of its large mass, it was impossible for Saturn to incur that much change in its rotation over such a short time.
"Because the gas planets are so big, they have enough angular momentum to keep them spinning at pretty much the same rate for billions of years," he said. "So something strange was going on."
Even more puzzling was Cassini's later discovery that Saturn's northern and southern hemispheres appear to be rotating at different speeds.
"That's when we realized the magnetic field is not like clockwork but slipping," Karkoschka said. "The interior is rotating and drags the magnetic field along, but because of the solar wind or other, unknown influences, the magnetic field cannot keep up with respect to the planet's core and lags behind."
Instead of spacecraft powered by billions of dollars, Karkoschka took advantage of what one might call the scraps of space science: publicly available images of Neptune from the Hubble Space Telescope archive. With unwavering determination and unmatched patience, he then pored over hundreds of images, recording every detail and tracking distinctive features over long periods of time.
Other scientists before him had observed Neptune and analyzed images, but nobody had sleuthed through 500 of them.
"When I looked at the images, I found Neptune's rotation to be faster than what Voyager observed," Karkoschka said. "I think the accuracy of my data is about 1,000 times better than what we had based on the Voyager measurements – a huge improvement in determining the exact rotational period of Neptune, which hasn't happened for any of the giant planets for the last three centuries."   
Two features in Neptune's atmosphere, Karkoschka discovered, stand out in that they rotate about five times more steadily than even Saturn's hexagon, the most regularly rotating feature known on any of the gas giants.
Named the South Polar Feature and the South Polar Wave, the features are likely vortices swirling in the atmosphere, similar to Jupiter's famous Red Spot, which can last for a long time due to negligible friction. Karkoschka was able to track them over the course of more than 20 years.
An observer watching the massive planet turn from a fixed spot in space would see both features appear exactly every 15.9663 hours, with less than a few seconds of variation.
"The regularity suggests those features are connected to Neptune's interior in some way," Karkoschka said. "How they are connected is up to speculation."
One possible scenario involves convection driven by warmer and cooler areas within the planet's thick atmosphere, analogous to hot spots within the Earth's mantle, giant circular flows of molten material that stay in the same location over millions of years.
"I thought the extraordinary regularity of Neptune's rotation indicated by the two features was something really special," Karkoschka said.
"So I dug up the images of Neptune that Voyager took in 1989, which have better resolution than the Hubble images, to see whether I could find anything else in the vicinity of those two features. I discovered six more features that rotate with the same speed, but they were too faint to be visible with the Hubble Space Telescope, and visible to Voyager only for a few months, so we wouldn't know if the rotational period was accurate to the six digits. But they were really connected. So now we have eight features that are locked together on one planet, and that is really exciting."
In addition to getting a better grip on Neptune's rotational period, the study could lead to a better understanding of the giant gas planets in general.
"We know Neptune's total mass but we don't know how it is distributed," Karkoschka explained. "If the planet rotates faster than we thought, it means the mass has to be closer to the center than we thought. These results might change the models of the planets' interior and could have many other implications."

Astro News: Spitzer finds distant galaxies grazed on gas

Galaxies once thought of as voracious tigers are more like grazing cows, according to a new study using NASA's Spitzer Space Telescope.

Astronomers have discovered that galaxies in the distant, early universe continuously ingested their star-making fuel over long periods of time. This goes against previous theories that the galaxies devoured their fuel in quick bursts after run-ins with other galaxies.

"Our study shows the merging of massive galaxies was not the dominant method of galaxy growth in the distant universe," said Ranga-Ram Chary of NASA's Spitzer Science Center at the California Institute of Technology in Pasadena, Calif. "We're finding this type of galactic cannibalism was rare. Instead, we are seeing evidence for a mechanism of galaxy growth in which a typical galaxy fed itself through a steady stream of gas, making stars at a much faster rate than previously thought."

Chary is the principal investigator of the research, appearing in the Aug. 1 issue of the Astrophysical Journal. According to his findings, these grazing galaxies fed steadily over periods of hundreds of millions of years and created an unusual amount of plump stars, up to 100 times the mass of our sun.

"This is the first time that we have identified galaxies that supersized themselves by grazing," said Hyunjin Shim, also of the Spitzer Science Center and lead author of the paper. "They have many more massive stars than our Milky Way galaxy."

Galaxies like our Milky Way are giant collections of stars, gas and dust. They grow in size by feeding off gas and converting it to new stars. A long-standing question in astronomy is: Where did distant galaxies that formed billions of years ago acquire this stellar fuel? The most favored theory was that galaxies grew by merging with other galaxies, feeding off gas stirred up in the collisions.

Chary and his team addressed this question by using Spitzer to survey more than 70 remote galaxies that existed 1 to 2 billion years after the Big Bang (our universe is approximately 13.7 billion years old). To their surprise, these galaxies were blazing with what is called H alpha, which is radiation from hydrogen gas that has been hit with ultraviolet light from stars. High levels of H alpha indicate stars are forming vigorously. Seventy percent of the surveyed galaxies show strong signs of H alpha. By contrast, only 0.1 percent of galaxies in our local universe possess this signature.

Previous studies using ultraviolet-light telescopes found about six times less star formation than Spitzer, which sees infrared light. Scientists think this may be due to large amounts of obscuring dust, through which infrared light can sneak. Spitzer opened a new window onto the galaxies by taking very long-exposure infrared images of a patch of sky called the GOODS fields, for Great Observatories Origins Deep Survey.

Further analyses showed that these galaxies furiously formed stars up to 100 times faster than the current star-formation rate of our Milky Way. What's more, the star formation took place over a long period of time, hundreds of millions of years. This tells astronomers that the galaxies did not grow due to mergers, or collisions, which happen on shorter timescales. While such smash-ups are common in the universe -- for example, our Milky Way will merge with the Andromeda galaxy in about 5 billion years -- the new study shows that large mergers were not the main cause of galaxy growth. Instead, the results show that distant, giant galaxies bulked up by feeding off a steady supply of gas that probably streamed in from filaments of dark matter.

Chary said, "If you could visit a planet in one of these galaxies, the sky would be a crazy place, with tons of bright stars, and fairly frequent supernova explosions."

NASA's Jet Propulsion Laboratory in Pasadena, Calif., manages the Spitzer Space Telescope mission for the agency's Science Mission Directorate in Washington. Science operations are conducted at the Spitzer Science Center at Caltech. Caltech manages JPL for NASA.

Credit: Caltech/NASA/JPL